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Abstract. We show that the classical scale symmetry of a particle moving in string defect background
is broken due to inequivalent quantization of the classical system, which leads to scaling anomaly. The
consequence of this anomaly is the formation of single bound state in the coupling constant interval
γ ∈ (−1, 1). The inequivalent quantization is characterized by a 1-parameter family of self-adjoint extension
parameter ω. It has been conjectured that the formation of loosely bound state in string defect background
may lead to the so called anomalous scattering cross section for the particles, which has been experimentally
observed in molecular physics. A plausible laboratory test for the anomalous scattering could be devised in
condensed matter system.
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Symmetry and corresponding symmetry breaking [1] is
an extremely important issue in physics because of their
consequences in different physical processes. Usually in
physics we consider three different sorts of symmetry
breaking, i.e., spontaneous, explicit and anomalous sym-
metry breaking. However, anomalous symmetry break-
ing [2, 3] occurs when some kind of classical invariance of
a system is violated upon quantization. In quantum field
theory [3–7] and string theory [8] anomaly is a hugely
studied issue. From the theoretical point of view anomaly
is being investigated in various fields starting from molecu-
lar physics [9, 10] to black hole [11]. In quantum mechanics
an operator becomes anomalous when it does not keep the
domain of the Hamiltonian invariant. There is another in-
teresting example of anomaly, which occurs in molecular
physics [9, 10] in quantum mechanical context. For ex-
ample, interaction of an electron in the field of a polar
molecule is a simple example of anomaly, where the classi-
cal scaling symmetry of the system is broken once it goes
inequivalent quantization [12]. The obvious consequence of
this scaling anomaly in molecular physics is the occurrence
of bound state and the dependence of momentum in the
phase shift of scattering cross section.
The problem of quantum anomaly which we consider

here may occur in the background of a string defect,
when a particle is moving in it. This problem has re-
ceived lots of interest due to its analogy [13–15] with
Aharanov–Bohm effect [16]. In relativistic theory it has
been shown [17, 18] that the Dirac equation in cosmic
string background needs nontrivial boundary condition to
be imposed on the spinor wave-function at the origin. See
other examples also [19–21]. In language of mathematics
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the construction of nontrivial boundary condition is usu-
ally called self-adjoint extensions [22–24]. The extensions
can be characterized by independent parameters and dif-
ferent value of parameters lead to inequivalent theories.
It has been observed [25] that in cosmic string scenario
the fermionic charge can be non-integral multiple of Higgs
charge. Since the flux is quantized with respect to the
Higgs charge, it will lead to nontrivial Aharanov–Bohm
scattering of fermion. This result has Phenomenological
importance because, the cross section is much larger than
the one coming from gravitational scattering. In this letter
we will discuss about a possible enhancement of scatter-
ing cross section due to the temporary formation of loosely
bound state in background space of string defect.
In non-relativistic theory [26, 27], the consideration of

inequivalent quantization is also inevitable in order to
get bound state for the particle moving in string defect
background. In [28] gravitational scattering by particles
of a spinning source in two dimension has been studied.
There, it has been shown that the energy eigenvalue and
corresponding eigenfunction of a particle in the field of
a massless spinning source is equivalent to that in a back-
ground Aharanov–Bohm gauge field of an infinitely thin
flux tube. This topological effect also appears in elastic
solids [29–32]. The anomaly which we will discuss here has
the consequences, which is known for quite a some time.
But, the issue of anomaly in string defect background has
remained unnoticed as far as we know. Most importantly,
despite the similarity with electron polar molecule sys-
tem, there is no discussion in literature about the possible
anomaly in scattering cross section, which is usually seen in
molecular physics [12].
This letter has been organized in the following way:

First, we study the scaling symmetry of the classical sys-
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tem, which undergoes anomalous symmetry breaking upon
quantization; Second, we made an inequivalent quanti-
zation of the system, which is responsible for anomaly
and discuss its consequences; Third, we draw an analogy
with molecular physics and conjecture that in string defect
background there may have anomalous scattering cross
section due to the loosely bound state.
First, what is scaling symmetry and why it is important

in string defect background? Scale transformation can be
defined by the transformation t→ β2t, r→ βr [33], where
β is the scaling factor. Note that the transformation of
space co-ordinates and time in non-relativistic theory is
treated differently, the details of which can be found in [33].
In classical physics when the action is invariant under
this transformation, then the corresponding system has
scale symmetry. Since in non-relativistic quantum theory,
string defect induces a 1/r2 potential to the the particle
moving in its background, the relevant classical symme-
try would be the scale symmetry. To be more specific, the

Hamiltonian for the system H = p2

2M , scales as H →
1
β2
H.

The scale invariance of this Hamiltonian means, if ψ is

an eigenstate of the Hamiltonian H with eigenvalue E,
i.e., Hψ = Eψ, then ψβ = ψ(βr) will also be an eigenstate
of the same Hamiltonian with energy E/β2. This essen-
tially means that the system with scale symmetry does
not have any lower bound in energy; that means it cannot
have any bound state. Scale symmetry associated with the
generator D belongs to the conformal symmetry SO(2, 1)
formed by three generators: the HamiltonianH, the dilata-
tion generator D = tH− 14 (r.p+p.r) and the conformal

generator K =Ht2− 12 (r.p+p.r)+
1
2Mr

2. The commuta-
tor algebra for SO(2, 1) is: [D,H] =−ih̄H, [D,K] = ih̄K,
[H,K] = 2ih̄D [34]. In string defect case this scale symme-
try has not been noticed so far.
Second, we consider a non-relativistic particle of mass

M , moving in the background of string defect. The back-
ground is described by the space-time metric in cylindrical
coordinate (r, φ, z) as [29–32]

ds2 = dt2− dz2− dr2−α2r2dφ2 , (1)

where α characterizes the string. The constant α intro-
duces an angular deficit of 2π(1−α) in the Minkowski
space-time and is responsible for inducing scale invariant
1/r2 potential in non-relativistic quantum system. Due to
cylindrical symmetry of the space, we can easily see that
the motion of the particle in the z direction is basically
a free particle motion, described by the wave-function eikz.
k is wave-vector of the particle along the z direction. Since
we are considering an infinite string defect along the z di-
rection, it is enough to discuss the motion of the particle
on the plane perpendicular to the z direction. The motion
of the particle on the plane perpendicular to the z axis is
described by the time independent Schrödinger equation

−
h̄2

2M

[
1

r

∂

∂r
(r
∂

∂r
)+

1

α2r2
∂2

∂φ2

]
Ψ =EΨ . (2)

Exploiting the periodicity condition [35]

Ψ(φ+2π) = e2πλiΨ(φ) , (3)

where λ ∈ [0, 1), the wave-function can be separated as
Ψ(r, φ) =R(r)ei(m+λ)φ and (2) gives the radial equation

HrR(r) ≡−

[
d2

dr2
+
1

r

d

dr
+
γ2

r2

]
R(r) = ER(r) , (4)

where Hr is the radial Hamiltonian, with eigenvalue E =
2ME
h̄2
, γ = m+λ

α
and m = 0,±1,±2, · · ·. We will now dis-

cuss the solution of the Hamiltonian Hr. To discuss that
we need to know some general property of an operator,
let say O. For the moment let us restrict ourself to the
case of unbounded operator, because the Hamiltonian we
are discussing is unbounded from below. Now, it is known
that [22, 23] for an unbounded operator O, we first need to
define the domain D(O). This allows us to construct the
adjoint operatorO∗ and the corresponding domainD(O∗).
By definition, O is self-adjoint if and only if D(O) =
D(O∗) [22, 23]. It is also possible to get a more tech-
nical and mathematical analysis for the criteria of self-
adjointness of the operatorO in terms of deficiency indices
n±. Let K± =Ker(i±O∗), where Ker(X) is the kernel
of the operator. The deficiency indices n± are the dimen-
sion of the kernel K±. If n± = 0, then the operator O is
essentially self-adjoint. If n+ = n− = n �= 0, then O is not
self-adjoint but admits self-adjoint extensions and these
self-adjoint extensions are identified by the elements of an
U(n) group. The operator O on the other hand cannot be
made self-adjoint if n+ �= n−.
Let us now come back to the discussion of our oper-

ator of interest, which is Hr. The Hamiltonian Hr is de-
fined on the domain L2[R+, rdr]. Classically, this system
is scale invariant, because the coupling constant γ of the
inverse square potential is a dimensionless constant. How-
ever, quantummechanical analysis of this operator is much
more subtle. The HamiltonianHr is essentially self-adjoint
only for γ2 ≥ 1 in the domain

D0 = {ψ ∈ L
2(rdr), ψ(0) = ψ′(0) = 0} , (5)

of the HamiltonianHr. For γ ∈ (−1, 1), the Hamiltonian is
not essentially self-adjoint and therefore cannot play a role
for the Hamiltonian (it is therefore called formal Hamilto-
nian [22, 23]) and so has to be extended to another opera-
tor. Note that onlym= 0, λ ∈ [0, 1) andm=−1, λ ∈ (0, 1)
belong to the interval γ ∈ (−1, 1). For this case the defi-
ciency indices are (1, 1), and so the self-adjoint extensions
are labeled by a U(1) parameter eiω, which labels the do-
main Dω of the Hamiltonian Hω . The set Dω contains all
the vectors of the form φ++ e

iωφ− together with the elem-
ent of the domain D0. The solutions φ± are

φ± =Kγ
(
r e∓iπ/4

)
, (6)

where Kγ is the modified Bessel function [36]. The behav-
ior of φ++ e

iωφ− near singularity r→ 0 is [37]

φ++ e
iωφ− �A+

(r
2

)γ
+A−

(
2

r

)γ
, (7)

whereA± =−
πi

sin(πγ)

cos(ω2±
πγ
4 )

Γ (1±γ) .
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We can now solve the eigenvalue problem (4). For γ2 ≥
1 there are no bound states. More precisely there are no
normalizable solution of the Schrödinger equation with
negative energy. However, for γ ∈ (−1, 1), there is exactly
one bound state with energy E , where

E =−

[
cos 14 (2ω+γπ)

cos 14 (2ω−γπ)

] 1
γ

(8)

and the corresponding eigenfunction is

R(r) =Kγ
(√
|E|r
)
. (9)

The asymptotic behavior of the bound state solution is

exponentially decaying R(r) ∼ e
−| 2ME

h̄2
|r
. Note that the

bound state solution is obtained in [17, 18] for relativis-
tic particle moving in cosmic string background. Here we
make some observation regarding our bound state solu-
tion (8) and (9). Note that imposing time-reversal symme-
try in (3) we get [26]

T̂Ψ(φ+2π) = e−2πλiT̂Ψ(φ) . (10)

The consistency of (3) and (10) demands that either λ= 0
or λ= 1/2. However, λ = 0 is not interesting because, in
order to keep γ = m+λ

α
in the interval γ ∈ (−1, 1) for λ= 0,

we have m= 0. This makes the system independent of the
effect of string characterized by α. So the interesting case
for our purpose are (1) λ= 1/2,m= 0 and α ∈ (1/2, 1) and
(2) λ = 1/2, m =−1 and α ∈ (1/2, 1). The energy eigen-
value for m = 0, λ = 1/2 has been plotted in Fig. 1. For
m= 0, λ=−1/2, the plot will be same, because the eigen-
value (9) is symmetric with respect to γ. From Fig. 1, it can
be seen that there may exist bound state for α arbitrarily
close to unity.
The existence of bound state is in contradiction with

the scale invariance, since scale invariance implies that
there is no length scale in the problem, whereas the exis-
tence of bound state provides a scale. This can be resolved

Fig. 1. A plot of bound state energy E (in h̄
2

2M unit) of particle
as a function of α of the string defect for three different values of
the self-adjoint extension parameter ω and withm= 0, λ= 1/2.
From top to bottom ω = π7 ,

π
8 ,
π
9 respectively

by looking at how scaling is implemented in the quantum
theory. The scaling operator is

Λ=
rp+pr

2
(11)

where p=−i ddr . It is easily seen that Λ is symmetric on the
domainD0 ofHr, and that for γ2 ≥ 1,Λ leaves invariant the
domain of the Hamiltonian. For γ2 ∈ (−1, 1),

Λφ=−i (φ+2rφ′) , (12)

where φ is any element, belonging to the domain Dω . The
small r behavior of the function Λφ is of the form

Λφ�−
i

2

[
(1+2γ)A+

(r
2

)γ
+(1−2γ)A−

(
2

r

)γ]
,

where the constantsA± are defined above.
So, Λφ clearly does not leave the domain of the Hamil-

tonian invariant. Scale invariance is thus anomalously bro-
ken [49–51], and this breaking occur precisely when the
Hamiltonian admits nontrivial self-adjoint extensions. This
also explains the quantummechanical emergence of a length
scale, namely the bound state energy.Wemust remark here
that there does exist self-adjoint extensions that preserve
scale invariance. For example, for ω = (1± γ2 )π there does
not exist any bound state. From the point of view of the do-
main, the operatorΛ leaves the domain invariant.
Third, we come to the question of anomalous mo-

mentum transfer scattering cross section. We discuss
this anomalous scattering in analogy with molecular
physics [12, 38–46]. In molecular physics, electron mov-
ing in the dipole field of a molecule experiences inverse
square potential and electrons are loosely captured by this
inverse square potential. It has been observed that the
experimental value of the momentum transfer scattering
cross section for the electron is much larger than the the-
oretically calculated value. It is usually argued1 that the
observed discrepancy between the experimentally observed
and theoretically calculated scattering cross section of elec-
trons is due to the formation of loosely bound state in
the inverse square potential. The lifetime of these loosely
bound electrons are very small. They are again released
from the molecule and contribute to the momentum trans-
fer scattering cross section. In our case also the situation is
exactly same. The particle experiences the same attractive
inverse square potential apart from the usual centrifugal
term, while moving in the background metric of string. In
this letter, it has been shown that particle can form loosely
bound state in string defect background, see Fig. 1 for the
behavior of bound state energy with respect to the con-
stant parameter α, characterizing the string. So in same
line with molecular physics we conjecture that the forma-
tion of loosely bound state in string background may lead
to the anomalous momentum transfer scattering for the

1 Anomalous scattering cross section for electron in the field
of polar molecule due to temporary capture of the electron by
the polar molecule was first pointed out by Turner. See [39] for
detail discussion.
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particles. However, the crucial difference between the mo-
lecular physics and our analysis is that in molecular physics
the scaling symmetry explicitly breaks down in reality due
to the finite size of the dipole but in case of string defect
there seems to be no such explicit scaling symmetry break-
ing in non-relativistic theory. The behavior of particle in
string background can be well formulated in condensed
matter system [47] with defects and it could serve as the
laboratory test for various properties of the string defect.
In liquid crystal, for example, one can device such a labo-
ratory test to observe the anomalous momentum transfer
scattering due to the string defect in the crystal. One pos-
sibility is to observe the scattering of light from the core of
string defect in transparent condensed matter system [48]
and see the discrepancy with theoretical result, which does
not take into account the effect of loosely bound state in
scattering.
Beforewe conclude,wediscuss about choosing thebound-

ary condition or in other words choosing the value of self-
adjoint extension parameter for string defect scenario.
In [21] it is reported that for Schrödinger equation the phys-
ical boundary condition for cosmic string scenario is that
the wavefunction is regular at origin. But for the relativistic
case Dirac spinor is singular at origin, which is also sup-
ported by [17, 18, 20]. These results are based on a model
where the flux is considered to be confined in a cylinder of ra-
diusR and then at the end taking the radiusR to zero to find
out the boundary condition. However there exists a differ-
entmodel described in [26, 27], where the the effect of string
is considered within the metric of the spacetime. Since in
our calculation we considered the effect of string within the
metric like [26, 27], we consider the same boundary condi-
tion of [26, 27]. Thus unlike [21] according to our boundary
condition, the wavefunctionmay be singular at the origin as
long as it remains square integrable. Note that our bound-
ary condition is more general and it includes the boundary
condition of [21] as a special case.
In conclusion, we have shown the existence of scaling

anomaly in string defect background. The consequence of
this anomaly is the existence of bound state of the par-
ticle moving in string defect background. We have conjec-
tured in analogy with molecular physics that there may
have anomalous momentum transfer scattering due to the
loosely bound state of the particle in string defect back-
ground. Although the conjecture is based on purely quali-
tative basis at this stage, it is however an interesting issue
to study. In fact, in laboratory one can in principle devise
experiment with condensed matter system to observe the
anomaly in scattering due to the short lived bound state.
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